CURRICULUM MAP – Year 7

Each topic will cover the key enquiry processes, relevant maths skills and cultural capital. See corresponding schemes of work for more detail

HT1:	HT2:	Assessment	HT3:	HT4:	Assessment	HT5:	HT6:	EOY Assessment
INTENT	INTENT	Every two topics,	INTENT	INTENT	Every two topics,	INTENT	INTENT	End of Year
Intro to science and	Energy Resources	students	Sexual reproduction in	Metals and Non-	students	Electricity	Ecosystems	assessment –
Health and safety	Describe where	complete a	animals	Metals	complete a	To introduce	Investigate the	interleaved
and baseline	our domestic	synoptic,	Learn about the	Pupils will explore	synoptic,	voltage, resistance	impact of	content from the
assessment	energy supply	interleaved	reproductive systems	the properties of	interleaved	and current within	changes in a	whole Year 7
CL – Health and	comes from and	assessment	in humans.	metals and-non-	assessment	series and parallel	population of	
Safety Advisor, Fire	compare	which will assess	Understand how the	metals and make	which will assess	circuits.	one organism on	Assessments to
Safety Engineer.	different sources	content from the	structure of the male	observations of	content from the		others in the	assess the
, ,	of energy.	previous two	and female	metals reacting in	previous two	Enquiry –	ecosystem.	Enquiry
The particle model		topics and	reproductive organs	acids.	topics and	modelling electric		Processes
Explain that the	Enquiry – fuel	interleave	are related to		interleave	circuits	Enquiry –	With help,
particle model is a	comparison	questions from	fertilisation, the	Enquiry - exploring	questions from	CL – Electrical	population	calculate a mean
concept that	CL - Oil Rig	topics taught in	development of a	the properties of	topics taught in	Engineer,	sampling	of two values.
explains melting,	Engineer,	the previous	foetus and birth.	metals and non-	the previous	Electrician.	CL – Ecologist,	Add data to a
freezing, boiling and	Environmental	term or year, to	CL – Midwife,	metals	term or year, to	CST – Creation and	Ornithologist	graph or chart.
condensing. Particles	Ecientist,	promote long-	Zookeeper, Zoologist,	CL – Metallurgist	promote long-	environment – safe	CST – Dignity –	State how to
are always moving in	Chemical Analyst,	term memory	Vet		term memory	disposal of	use of DDT and	evaluate data
some way	Climate Change	and retrieval.	CST – Dignity of work	Muscle and Bones	and retrieval.	batteries.	animal rights.	and identify
depending on their	Scientist,		and participation –	Understand the		Solidarity –		experimental
kinetic energy.	Renewable	Assessments to	fertility treatment.	effects of	Assessments to	reducing reliance	Sound	errors. Suggest
CL – Chocolatier	Energy	assess the	Common good –	recreational drugs	assess the	of fossil fuels.	Describe how	one improvement
	Researcher	Enquiry	Increasing population	(including	Enquiry		sound is	to an
Cells and	CST – Option for	Processes	issues.	substance misuse)	Processes	Mixtures and	produced and	investigation.
organisation	the poor –	State what is	Dignity – right to life.	on behaviour,	Plan and	separations	how a sound	
Know the structure	Cheaper methods	meant by a risk		health and life	investigation	Recap knowledge	wave transfers	
and function of cells.	of energy	assessment.		processes. Disease	identifying the	of solids, liquids	energy.	
Explore how these	production.	List what should be	<u>Forces</u>	and vaccination.	variables. Record	and gases and	Understand how	
cells were first	Solidarity –	included in a	Pupils will explore	Muscles and the	data.	apply this to	the structure of	
discovered and	Sustainable	conclusion.	different forces and	skeleton	State what is	separating	the ear allows	
described and be	resources for the		their effects.	CL – Sports	meant by a line of	techniques.	sound to be	
able to relate the	future.			Scientist,	best fit.		heard.	
structures to	Creation and the		Enquiry – friction and	Physiotherapist		Enquiry –	Enquiry –	
function.	environment –		surfaces			separation of sand	soundproofing	

www.stjamescheadle.co.uk

With God all things are possible Matthew 1926

Enquiry –	reducing carbon	CL – Racing engineer,		and salt	CL – Sound and	
preparation of a	footprint	Astronaut, Architect,		CL – Alcohol	Acoustic Engineer	
cheek cell and onion	lootprint	Aerospace Engineer,		Producer (Brewer),	Acoustic Engineer	
cell slide.	Acids and alkalis	Marine Engineer,		Forensic Scientist	CST – Creation	
CL – Microbiologist	Explore everyday	Sports Equipment		CST – Solidarity –	and the	
CST – Life begins	acids and alkalis	Designer		production of clean	environment –	
from a fertilized egg	and how to	Designer		drinking water.	sound pollution.	
cell	identify them. To			uninking water.	sound pollution.	
Cen	use lab acids and					
	bases and know					
	their use in					
	reactions.					
	reactions.					
	Enquiry – antacid					
	investigation					
	CL – Forensic					
	Scientist, Lab					
	Technician					
	CST – Peace –					
	acid attacks					
	damage society.					
	Creation and the					
	environment –					
	incorrect pH					
	reduces					
	biodiversity.					