CURRICULUM MAP – Year 11 COMBINED SCIENCE Each topic will cover the key enquiry processes, relevant maths skills and cultural capital. See corresponding schemes of work for more detail.

HT1:	HT2:	Assessment	HT3:	HT4:	Assessment	HT5
INTENT	INTENT	Students will	INTENT	INTENT	Students will	INTENT
Ecology 4.7	Inheritance, Variation and	be assessed	Forces 6.5	Homeostasis and Response	be assessed	Magnetism 6.7
In this section we will	Evolution 4.6	by a series of	We learn about forces and	<u>4.5</u>	by a series of	We learn about permanent
explore how humans are	We will discover how the	end of topic	their interactions, forces in	We learn the structure and	end of topic	and induced magnetism and
threatening biodiversity as	number of chromosomes are	tests followed	motion and Newton's Laws	function of the nervous and	tests followed	how a magnet moving in a
well as the natural systems	halved during meiosis and	by a larger	of Motion. Engineers analyse	hormonal system.	by a second	coil can produce electric
that support it.	then combined with new	MOCK	forces when designing a		MOCK or	current and also that when
	genes from the sexual	assessment at	great variety of machines	Link to forces (reaction	interleaved	current flows around a
Delivered in the warmer	partner to produce unique	the end of the	and instruments, from road	times)	paper at the	magnet it can produce
months for fieldwork	offspring.	term.	bridges and fairground rides		end of HT3.	movement.
			to atomic force microscopes.	CL - Neurosurgeon, Optician,		
CL - Ecologist, Marine	Link to non-communicable			Dietician, Nephrologist.		CL- Rail Technician, Sound
Biologist, Conservationist,	diseases in 4.3		CL- Engineer			Engineer Radiologist, Auto
Sustainability Officer.						Engineer
	CL- Genetic counsellor and		Chemistry of the	MOCK EXAMS		
Rate and Extent of Chemical	palaeontologist		Atmosphere 5.9			Chemical Analysis 5.8
Change 5.6			We learn that the Earth's			We learn about the range of
We learn that whilst the	Organic Chemistry 5.7		atmosphere is dynamic and			qualitative tests to detect
reactivity of chemicals is a	The chemistry of carbon		forever changing. The causes			specific chemicals.
significant factor in how fast	compounds is so important		of these changes are			Instrumental methods as a
chemical reactions proceed,	that it forms a separate		sometimes man-made and			means of analysing the
there are many variables	branch of chemistry. We		sometimes part of natural			composition of chemicals.
that can be	learn that a great variety of		cycles.			
manipulated in order to	carbon compounds is					Link to particle model and
speed them up or slow them	possible because carbon		Link to Ecology and Organic			energy changes
down. We learn that some	atoms can form chains and		Chemistry			
reactions are reversible and	rings linked by C-C bonds.					CL- Environmental Officer
the yield can vary depending			CL- Environmental Officer,			Forensics, Glass Artist
on the conditions.	Link to enzymes, DNA as a		Vehicle Maintenance, energy			Skincare Scientist.
	polymer and inheritance		analyst, Geologist.			
Link to energy changes						Using Resources 5.10
Link to organisation	CL- Petroleum engineer,					Industries use the Earth's
(enzymes as catalysts)	Offshore drilling worker.					natural resources to

Link to limiting factors in				manufacture useful
Bioenergetics (Year 10)	Forces 6.5			products. In this topic, we
	We learn about forces and			learn that in order to
CL- Pollution Prevention	their interactions, forces in			operate sustainably,
Control Officer, Chemical	motion and Newton's Laws			chemists seek to minimise
Engineer, Technician,	of Motion. Engineers analyse			the use of limited resources,
Materials Scientist.	forces when designing a			use of energy, waste and
	great variety of machines			environmental impact in the
<u>Waves 6.6</u>	and instruments, from road			manufacture of these
We learn how waves carry	bridges and fairground rides			products. Chemists also aim
energy from one place to	to atomic force microscopes.			to develop ways of
another and how they carry				disposing of products at the
information.	Link to homeostasis and			end of their useful life in
	response (reaction times)			ways that ensure that
Link to atomic structure				materials and stored
(Year 10) and taught before	CL- Engineer			energy is utilised.
5.9				
				Link to chemistry of the
CL- Audiologist, acoustic				atmosphere
Engineer, Seismologist,				
Optometrist, Sound				CL- Environmental Chemist,
Engineer, Lighting Designer.				Waste management.