

HT1:	HT2:	Assessment	НТ3:	HT4:	Assessment	HT5	HT6:	Assessment
INTENT	INTENT	Students will	INTENT	INTENT	Students will	INTENT	INTENT	Students
Particle Model of	Quantitative	be assessed	Bioenergetics 4.4	Infection and Response	be assessed	Ecology 4.7		will be
Matter 6.3	Chemistry 5.3	by a series of	We explore how	4.3	by a series of	In this section we will	Interleaving of paper 1	assessed by
We learn how the	We use	end of topic	plants harness the	We study the pathogens	end of topic	explore how humans	topics covered	a series of
particle model is	quantitative	tests followed	Sun's energy in	which cause infectious	tests	are threatening		end of topic
widely used to	analysis to	by a larger	photosynthesis in	disease in plants and animals. We also learn	followed by a	biodiversity as well as	Review of paper 1	tests
predict the	determine the	interleaved	order to make food.	about monoclonal	larger	the natural systems	exam	followed by
behaviour of	formulae of	assessment at	We also explore	antibodies.	interleaved	that support it. We		a larger
solids, liquids and	compounds and the	the end of the	aerobic vs anaerobic		assessment at	also learn the factors	Gap analysis of paper	interleaved
gases (gas	equations for	term.	respiration.	Link to photosynthesis in	the end of	which speed up the	1 assessments	assessment
pressure) and how	reactions. We learn			4.4	the term.	rate of decay and		at the end
this has many	about yield and		Link to balancing			sustainable food	Revision following gap	of the term
applications in	atom economy.		equations in 5.3	CL- Pathologist, Doctor,		production.	analysis	
everyday life.				Lab researcher.				
	CL- Pharmacist and		CL- Farmer, Gardener,	- 0		Delivered in the	CEW – whole school	
Link to KS3 forces	Chemical Engineer.		Sports Athlete.	Energy Changes 5.5		warmer months for		
and solids, liquids				We learn that energy		fieldwork		
and gases	Chemical Changes		Atomic Structure 6.4	changes are an				
	<u>5.4</u>		We revisit the	important part of		CL- Ecologist, Marine		
CL- Deep Sea	We learn about the		structure of the atom	chemical reactions. The		Biologist,		
Diver, Materials	extraction of		and how this links to	interaction of particles		Conservationist,		
Engineer, Jeweller.	important		ionising radiation.	often involves transfers		Sustainability Officer.		
	resources from the		Nuclear	of energy due to the				
Cell Biology 4.1	earth makes use of		fission/fusion.	breaking and formation		Rate and Extent of		
We explore how	the way that some			of bonds. We learn about chemical cells		Chemical Change 5.6		
structural	elements and		Recap bonding and	and fuel cells.		We learn that whilst		
differences	compounds react		DNA from cell biology	and ruer cens.		the reactivity of		
between types of	with each other and			Link to big anguagetics as		chemicals is a		
cells enables them	how easily they can		CL- Medical Physicist,	Link to bioenergetics as examples of		significant factor in		
to perform specific	be 'pulled apart'.		Radiographer,	endothermic and		how fast chemical		
functions within	We also learn about		Radiation Protection			reactions proceed,		
the organism. We	titrations.		Practitioner.	exothermic reactions		there are many		
learn about				CL- Energy engineer.		variables that can be		

-		 			
culturing	Link to ionic	Quantitative	Atomic Structure 6.4	manipulated in order	
microbes.	bonding in 5.2	Chemistry 5.3	We revisit the structure	to speed them up or	
		We use quantitative	of the atom and how	slow them down. We	
Link to particles	CL- Quarry	analysis to determine	this links to ionising	learn that some	
	Engineer,	the formulae of	radiation. Nuclear	reactions are	
CL – Animal	Geoscientist.	compounds and the	fission/fusion.	reversible and the	
Technician,		equations for		yield can vary	
Biologist, Botanist,	Organisation 4.2	reactions. We learn	Recap bonding and	depending on the	
General	We learn about the	about yield and atom	DNA from cell biology	conditions.	
Practitioner (GP),	human digestive	economy.			
Hospital Doctor,	system which		CL- Medical Physicist,	Link to energy changes	
Pharmacologist.	provides the body	CL- Pharmacist and	Radiographer,	Link to organisation	
	with nutrients and	Chemical Engineer.	Radiation Protection	(enzymes as catalysts)	
Bonding, Structure	the respiratory		Practitioner.	Link to limiting factors	
and Properties of	system that			in Bioenergetics	
Matter 5.2	provides it with				
We use theories of	oxygen and			CL- Pollution	
structure and	removes carbon			Prevention Control	
bonding to explain	dioxide. We will			Officer, Chemical	
the physical and	also learn how the			Engineer, Chemical	
chemical	plant's transport			Technician, Materials	
properties of	system is			Scientist.	
materials	dependent on				
including	environmental			Waves 6.6	
nanoparticles.	conditions to			We learn how waves	
	ensure that leaf			carry energy from one	
CL- Materials	cells are provided			place to another and	
Engineer,	with what they			how they carry	
Nanotechnologist,	need for			information, including	
Research and	photosynthesis.			deflection of waves	
Development				and sound waves.	
Manager.	CL- Dietitian				
	Cardiologist, Vet,			Link to atomic	
Atomic Structure	Nutritionist,			structure and taught	

Lil B. C. P.	DI			1.6.50	
and the Periodic	Phlebotomist,			before 5.9	
<u>Table 5.1</u>	Surgeon.				
We learn how				CL- Audiologist,	
arrangement of	Energy 6.1			Acoustic Engineer,	
elements in the	For the students to			Seismologist,	
modern periodic	look at the different			Optometrist, Sound	
table (including	types of energy			Engineer, Lightning	
transition	store, observe in			Designer.	
elements) can be	everyday examples				
explained in terms	how they can be				
of atomic	transferred and				
structure which	calculated and				
provides evidence	investigate the				
for the model of a	main energy				
nuclear atom with	resources.				
electrons in					
energy levels.	Link to KS3 energy				
	resources				
Link to particles					
	CL- Energy				
CL- Research	Engineer,				
Scientist, Chemist.	Oceanographer,				
	Hydrologist.				
	Electricity 6.2				
	We learn about				
	electrical charge				
	and current in				
	series and parallel				
	circuits. We also				
	learn about the				
	domestic uses of				
	electricity and how				
	it is supplied. We				

study static				
electricity.				
Link to electrons in				
5.1				
CL- Electronic and				
Electrical Engineer.				