

HT1:	HT2:	Assessment	HT3:	HT4:	Assessment	HT5	HT6:	Assessment
INTENT	INTENT	Students will	INTENT	INTENT	Students will	INTENT	INTENT	Students
Particle Model of	Atomic Structure	be assessed	Organisation 4.2	Electricity 6.2	be assessed	Infection and Response	Atomic Structure 6.4	will be
Matter 6.3	and the Periodic	by a series of	We learn about the	We learn about	by a series of	4.3	We revisit the structure	assessed by
We learn how the	Table 5.1	end of topic	human digestive	electrical charge and	end of topic	We study the	of the atom and how	a series of
particle model is	We learn how	tests	system which provides	current in series and	tests	pathogens which cause	this links to ionising	end of topic
widely used to	arrangement of	followed by a	the body with nutrients	parallel circuits. We	followed by a	infectious disease in	radiation.	tests
predict the	elements in the	larger	and the respiratory	also learn about the	larger	plants and animals		followed by
behaviour of	modern periodic	interleaved	system and circulatory	domestic uses of	interleaved	Link to photosynthesis	Recap bonding	a larger
solids, liquids and	table can be	assessment	system that provides it	electricity and how it is	assessment at	in 4.4	Recap DNA from cell	interleaved
gases and how	explained in terms	at the end of	with oxygen and	supplied.	the end of	CL- Pathologist,	biology	assessment
this has many	of atomic	the term	removes waste. We will		the term	Doctor, Lab	CL- Medical Physicist,	at the end
applications in	structure which		also learn how the	Link to electrons in 5.1		researcher.	Radiographer, Radiation	of the term
everyday life.	provides evidence		plant's transport	CL- Electronic and		rescurencer	Protection Practitioner.	
	for the model of a		system is dependent on	Electrical Engineer.		Quantitative		
Link to KS3 forces	nuclear atom with		environmental			Chemistry 5.3		
and solids, liquids	electrons in		conditions to ensure	Chemical Changes 5.4		We use quantitative		
and gases.	energy levels.		that leaf cells are	We learn about the		analysis to determine		
CL- Deep Sea Diver	· · ·		provided with what	extraction of important		the formulae of		
Materials	Link to particles		they need for	resources from the		compounds and the		
Researcher,	CL- Research		photosynthesis.	earth makes use of the		equations for		
Engineer, Jeweller.	Scientist, Chemist.			way that some		reactions.		
			CL- Dietitian	elements and		CL- Pharmacist and		
Cell Biology 4.1			Cardiologist, Vet,	compounds react with		Chemical Engineer.		
We explore how	Bonding, Structure		Nutritionist,	each other and how		· ·		
structural	and Properties of		Phlebotomist, Surgeon.	easily they can be		Energy Changes 5.5		
differences	Matter 5.2			'pulled apart'.		We learn that energy		
between types of	We use theories of		Bioenergetics 4.4			changes are an		
cells enables them	structure and		We explore how plants	Link to ionic bonding in		important part of		
to perform specific	bonding to explain		harness the Sun's	5.2		chemical reactions.		
functions within	the physical and		energy in	CL- Quarry Engineer,		The interaction of		
the organism.	chemical		photosynthesis in order	Geoscientist.		particles often		
	properties of		to make food. We also			involves transfers of		
Taught before	materials.		explore aerobic vs			energy due to the		

CURRICULUM MAP – Year 10 COMBINED SCIENCE Each topic will cover the key enquiry processes, relevant maths skills and cultural capital. See corresponding schemes of work for more detail.

ionising radiation.	CL- Materials	anaerobic respiration.		breaking and	
CL – Animal	Engineer,			formation of bonds.	
Technician,	Nanotechnologist,	Link to balancing			
Biologist, Botanist,	Research and	equations from Chem		Link to bioenergetics	
General	Development	CL- Farmer, Gardener,		as examples of	
Practitioner (GP),	Manager.	Sports Athlete.		endothermic and	
Hospital Doctor,				exothermic reactions	
Pharmacologist.	Energy 6.1			CL- Energy Engineer.	
	For the students				
	to look at the				
	different types of				
	energy store,				
	observe in				
	everyday				
	examples how				
	they can be				
	transferred and				
	calculated and				
	investigate the				
	main energy				
	resources.				
	Link to KS3 energy				
	resources				
	CL- Energy				
	Engineer,				
	Oceanographer,				
	Hydrologist.				
	,				